Numerical simulation of Laminar Free Convection Heat Transfer around Isothermal Concave and Convex Body Shapes

نویسندگان

چکیده مقاله:

In the present research, free convection heat transfer from isothermal concave and convex body shapes is studied numerically. The body shapes investigated here, are bi-sphere, cylinder, prolate and cylinder with hemispherical ends; besides, they have the same height over width (H/D = 2). A Numerical simulation is implemented to obtain heat transfer and fluid flow from all of the geometries in a wide range of Rayleigh numbers. The results show that flatness, concavity and smoothness have major effects on estimation of free convection heat transfer. As the total surface heat transfer area changed by altering the geometry, the local Nusselt number are compared for these body shapes; as well; it shows that concave surfaces has adverse influence on transferring heat. In addition, the current results reveal the average Nusselt numbers based on square surface area are not affected by the geometries for the laminar range of Rayleigh numbers. Besides, “incompressible ideal gas model” is used for the variation of density in free convection heat transfer. This model has the capability to be utilized in the cases with high temperature differences between the fluid and the bodies’ surfaces.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical simulation of laminar convection heat transfer from an array of circular perforated fins

The present paper reports the laminar fluid flow and heat transfer of a heated array of circular-perforated and solid fins mounted over a flat surface using the finite-volume method. One to four circular cross-sectional perforations are made along the length of the fins. The SIMPLE algorithm is used for pressure-velocity coupling and the second order upwind technique is employed to discreti...

متن کامل

Numerical simulation of mixed convection heat transfer of nanofluid in an inclined enclosure by applying LBM

Mixed convection of Cu-Water nanofluid is studied numerically in a shallow inclined enclosure by applying lattice Boltzmann method. The D2Q9 lattice and internal energy distribution function based on the BGK collision operator are used in order to develop the thermal flow field. The enclosure's hot lid has the constant velocity of U0 while its cold lower wall has no motion. Moreover, sidewalls ...

متن کامل

Free Convection Heat Transfer from a Non-Isothermal Permeable Cone with Suction and Temperature-Dependent Viscosity

This work studies the free convection heat transfer from a non-isothermal permeable cone with suction and temperature-dependent viscosity. A suitable coordinate transformation is used to transform the governing equations into nonsimilar boundary layer solutions, and the cubic spline collocation method is then employed to solve the obtained governing equations. The local Nusselt number is presen...

متن کامل

Free Convection Flow and Heat Transfer of Nanofluids of Different Shapes of Nano-Sized Particles over a Vertical Plate at Low and High Prandtl Numbers

In this paper, free convection flow and heat transfer of nanofluids of differently-shaped nano-sized particles over a vertical plate at very low and high Prandtl numbers are analyzed.  The governing systems of nonlinear partial differential equations of the flow and heat transfer processes are converted to systems of nonlinear ordinary differential equation through similarity transformations. T...

متن کامل

Inverse Boundary Design Problem of Combined Radiation-convection Heat Transfer in Laminar Recess Flow

In the present work, an inverse analysis of combined radiation and laminar forced convection heat transfer in a two-dimensional channel with variable cross sections is performed. The conjugate gradient method is used to find the temperature distribution over the heater surface to satisfy the prescribed temperature and heat flux distributions over the design surface. The fluid is considered to b...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 2  شماره 2

صفحات  37- 44

تاریخ انتشار 2015-08-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023